Fast vs slow physical aging of a glass forming liquid

Author:

Richert Ranko1ORCID,Gabriel Jan P.2ORCID

Affiliation:

1. School of Molecular Sciences, Arizona State University 1 , Tempe, Arizona 85287, USA

2. Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University 2 , Roskilde 4000, Denmark

Abstract

Using electric fields to initiate the process of physical aging has facilitated measurements of structural recovery dynamics on the time scale of milliseconds. This, however, complicates the interesting comparison with aging processes due to a temperature jump, as these are significantly slower. This study takes a step toward comparing the results of field and temperature perturbations by providing data on field-induced structural recovery of vinyl ethylene carbonate at two different time scales: 1.0 ms at 181 K and 33 s at 169 K, i.e., 4.5 decades apart. It is found that structural recovery is a factor of two slower than structural relaxation in equilibrium, with the latter determined via dielectric relaxation in the limit of linear response. The relation between recovery and relaxation dynamics remains temperature invariant across the present experimental range.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the origin of time-aging-time superposition;The Journal of Chemical Physics;2024-01-08

2. Comparing two sources of physical aging: Temperature vs electric field;The Journal of Chemical Physics;2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3