Symmetry and scaling in one-dimensional compressible two-phase flow

Author:

Minich R. W.1ORCID,Quint D. A.1ORCID,Herbold E. B.1ORCID,Bober D. B.1ORCID,Kumar Mukul1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory , P.O. Box 808, L-45, Livermore, California 94551-0808, USA

Abstract

Investigations of shock compression of heterogeneous materials often focus on the shock front width and overall profile. The number of experiments required to fully characterize the dynamic response of a material often belie the structure–property relationships governing these aspects of a shock wave. Recent observations measured a pronounced shock-front width on the order of 10 s of ns in particulate composites. Here, we focus on particulate composites with disparate densities and investigate whether the mechanical interactions between the phases are adequate to describe this emergent behavior. The analysis proceeds with a general Mie–Grüneisen equation of state for the matrix material, a general drag force law with general power-law scaling for the particle-matrix coupling of the phases, and a volume fraction-dependent viscosity. Lie group analysis is applied to one-dimensional hydrodynamic flow equations for the self-consistent interaction of particles embedded in a matrix material. The particle phase is characterized by a particle size and volume fraction. The Lie group analysis results in self-similar solutions reflecting the symmetries of the flow. The symmetries lead to well-defined scaling laws, which may be used to characterize the propagation of shock waves in particle composites. An example of the derived scaling laws for shock attenuation and rise time is shown for experimental data on shock-driven tungsten-loaded polymers. A key result of the Lie analysis is that there is a relationship between the exponents characterizing the form of the drag force and the exponent characterizing the shock velocity and its attenuation in a particulate composite. Comparison to recent experiments results in a single exponent that corresponds to a conventional drag force.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3