Sorting of enantiomers using optical chirality in uniform light field

Author:

Yao Jun1ORCID,Bai Yihua1ORCID,Liu Yi-Dong1ORCID,Wang Jian2ORCID,Yang Yuanjie1ORCID

Affiliation:

1. School of Physics, University of Electronic Science and Technology of China 1 , Chengdu 611731, China

2. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology 2 , Wuhan 430074, China

Abstract

Enantiomer sorting greatly promotes the advancement of chemistry, bioscience, and medicine while also facing significant challenges. Recently, all-optical solutions have attracted considerable interest due to their non-invasiveness. While, it should be noted that the achiral optical force is always much larger than the chiral gradient force that plays a key role in all-optical enantiomer sorting, hindering the separation of enantiomers. Previously proposed methods to boost the chiral gradient forces by plasmonic and photonic nanostructures are often accompanied by the enhancement of achiral optical forces. The sorted chiral particles are also difficult to be transferred from the complex nanostructures. Here, we propose an approach for separating enantiomers using uniform light field formed by two waves, which is capable of sorting deep sub-wavelength chiral particles. In our method, the chiral particles can be sorted within a simple planar structure while the achiral gradient force is equal to zero. Our research reveals a promising perspective on large-scale sorting for enantiomers.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3