Experiments on turbulence from colliding ice floes

Author:

Løken Trygve K.1ORCID,Marchenko Aleksey2ORCID,Ellevold Thea J.3ORCID,Rabault Jean4ORCID,Jensen Atle3ORCID

Affiliation:

1. Department of Mathematics Teaching and Learning, Nord University, Bodø, Norway

2. Department of Arctic Technology, The University Centre in Svalbard, Longyearbyen, Norway

3. Department of Mathematics, University of Oslo, Oslo, Norway

4. Information Technology Department, Norwegian Meteorological Institute, Oslo, Norway

Abstract

Increased knowledge about energy dissipation processes around colliding ice floes is important for improved understanding of atmosphere-ice-ocean energy transfer, wave propagation through sea ice, and the polar climates. The aim of this study is to obtain such information by investigating colliding ice floe dynamics in a large-scale experiment and directly measuring and quantifying the turbulent kinetic energy (TKE). The field work was carried out at Van Mijen Fjord on Svalbard, where a 3 × 4 m ice floe was sawed out in the fast ice. Ice floe collisions and relative water–ice motion were generated by pulling the ice floe back and forth in an oscillatory manner in a 4 × 6 m pool, using two electrical winches. Ice floe motion was measured with a range meter and accelerometers, and the water turbulence was measured acoustically with Doppler velocimeters and optically with a remotely operated vehicle and bubbles as tracers. Turbulent kinetic energy spectra were found to contain an inertial subrange where energy was cascading at a rate proportional to the −5/3 power law. The TKE dissipation rate was found to decrease exponentially with depth. The total TKE dissipation rate was estimated by assuming that turbulence was induced over an area corresponding to the surface of the floe. The results suggest that approximately 37% and 8% of the input power from the winches were dissipated in turbulence and absorbed in the collisions, respectively, which experimentally confirms that energy dissipation by induced turbulent water motion is an important mechanism for colliding ice floe fields.

Funder

Norges Forskningsråd

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3