Non-equilibrium dynamics at the gas–liquid interface: State-resolved studies of NO evaporation from a benzyl alcohol liquid microjet

Author:

Ryazanov Mikhail1ORCID,Nesbitt David J.123ORCID

Affiliation:

1. JILA, National Institute of Standards and Technology and University of Colorado 1 , Boulder, Colorado 80309, USA

2. Department of Physics, University of Colorado 2 , Boulder, Colorado 80309, USA

3. Department of Chemistry, University of Colorado 3 , Boulder, Colorado 80309, USA

Abstract

First measurements of internal quantum-state distributions for nitric oxide (NO) evaporating from liquid benzyl alcohol are presented over a broad range of temperatures, performed by liquid-microjet techniques in an essentially collision-free regime, with rotational/spin–orbit populations in the 2Π1/2,3/2 manifolds measured by laser-induced fluorescence. The observed rotational distributions exhibit highly linear (i.e., thermal) Boltzmann plots but notably reflect rotational temperatures (Trot) as much as 30 K lower than the liquid temperature (Tjet). A comparable lack of equilibrium behavior is also noted in the electronic degrees of freedom but with populations corresponding to spin–orbit temperatures (TSO) consistently higher than Trot by ∼15 K. These results unambiguously demonstrate evaporation into a non-equilibrium distribution, which, by detailed-balance considerations, predict quantum-state-dependent sticking coefficients for incident collisions of NO at the gas–liquid interface. Comparison and parallels with previous experimental studies of NO thermal desorption and molecular-beam scattering in other systems are discussed, which suggests the emergence of a self-consistent picture for the non-equilibrium dynamics.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3