Affiliation:
1. Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China , Hefei, Anhui 230026, China
Abstract
Recent developments in nonequilibrium thermodynamics, known as thermodynamic uncertainty relations, limit the system’s accuracy by the amount of free-energy consumption. A transport efficiency, which can be used to characterize the capacity to control the fluctuation by means of energy cost, is a direct result of the thermodynamic uncertainty relation. According to our previous research, biochemical systems consume much lower energy cost by noise-induced oscillations to keep almost equal efficiency to maintain precise processes than that by normal oscillations. Here, we demonstrate that the performance of noise-induced oscillations propagating can be further improved through a cascade reaction mechanism. It has been discovered that it is possible to considerably enhance the transport efficiency of the biochemical reactions attained at the terminal cell, allowing the cell to use the cascade reaction mechanism to operate more precisely and efficiently. Moreover, an optimal reaction coupling strength has been predicted to maximize the transport efficiency of the terminal cell, uncovering a concrete design strategy for biochemical systems. By using the local mean field approximation, we have presented an analytical framework by extending the stochastic normal form equation to the system perturbed by external signals, providing an explanation of the optimal coupling strength.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics