Improving time series prediction accuracy for the maxima of a flow by reconstructions using local cross sections

Author:

Hirata Yoshito1ORCID,Shiro Masanori2ORCID

Affiliation:

1. Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

2. Mathematical Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

Abstract

Despite a long history of time series analysis/prediction, theoretically few is known on how to predict the maxima better. To predict the maxima of a flow more accurately, we propose to use its local cross sections or plates the flow passes through. First, we provide a theoretical underpinning for the observability using local cross sections. Second, we show that we can improve short-term prediction of local maxima by employing a generalized prediction error, which weighs more for the larger values. The proposed approach is demonstrated by rainfalls, where heavier rains may cause casualties.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference21 articles.

1. Online short-term solar power forecasting

2. Forecasting wind power ramps with prediction coordinates

3. F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics Vol. 898 (Springer, 1981), pp. 366–381.

4. Embedology

5. S. Okuno, T. Takeuchi, S. Horai, K. Aihara, and Y. Hirata, “Avoiding underestimates for time series prediction by state-dependent local integration,” Mathematical Engineering Technical Reports METR 2017–22 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3