Spectroscopic observation of super-Alfvénic field-reversed configuration merging process by mixing of tracer ions

Author:

Kobayashi D.1ORCID,Seki T.1ORCID,Asai T.1ORCID,Takahashi Ts.1ORCID,Morelli J.2,Inomoto M.3,Takahashi T.4,Dettrick S.5ORCID,Gota H.5ORCID

Affiliation:

1. College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

2. Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario K7L 3N6, Canada

3. Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan

4. Graduate School of Science and Technology, Gunma University, Kiryu, Japan

5. TAE Technologies, Inc., Foothill Ranch, California 92610, USA

Abstract

Visualization of the collisional merging formation process of field-reversed configuration (FRC) has been attempted. In the collisional merging formation process, two initial FRC-like plasmoids are accelerated toward each other by a magnetic pressure gradient. The relative speed of the collision reaches several times the typical ion sonic speed and Alfvénic speed. The magnetic structure of the initial-FRCs is disrupted in the collision process, but the FRC-like magnetic structure is reformed in ∼30 µs after the collision. Magnetic reconnection should occur in this process; however, general theoretical models in magnetohydrodynamics approximation cannot be applied to this process because of the high-beta nature of FRC and super-Alfvénic/sonic relative speed. In this work, the spectroscopic observation of the collisional merging FRC formation was conducted to evaluate the timescale and geometry of merging. A slight amount of tracer element (e.g., helium) was mixed into one of two initial-FRCs. Mixing of the tracer did not cause serious adverse effects on the performance of the initial-FRC in the collision and merging processes. The collision and merging processes were visualized successfully and observed using a fast-framing camera with a bandpass filter. The timescale of merging and the outflow speed in the collisional merging process of FRCs were optically evaluated for the first time.

Funder

Japan Society for the Promotion of Science

Nihon University

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3