A deep learning approach to the measurement of long-lived memory kernels from generalized Langevin dynamics

Author:

Kerr Winter Max1ORCID,Pihlajamaa Ilian1ORCID,Debets Vincent E.1ORCID,Janssen Liesbeth M. C.1ORCID

Affiliation:

1. Department of Applied Physics, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Memory effects are ubiquitous in a wide variety of complex physical phenomena, ranging from glassy dynamics and metamaterials to climate models. The Generalized Langevin Equation (GLE) provides a rigorous way to describe memory effects via the so-called memory kernel in an integro-differential equation. However, the memory kernel is often unknown, and accurately predicting or measuring it via, e.g., a numerical inverse Laplace transform remains a herculean task. Here, we describe a novel method using deep neural networks (DNNs) to measure memory kernels from dynamical data. As a proof-of-principle, we focus on the notoriously long-lived memory effects of glass-forming systems, which have proved a major challenge to existing methods. In particular, we learn the operator mapping dynamics to memory kernels from a training set generated with the Mode-Coupling Theory (MCT) of hard spheres. Our DNNs are remarkably robust against noise, in contrast to conventional techniques. Furthermore, we demonstrate that a network trained on data generated from analytic theory (hard-sphere MCT) generalizes well to data from simulations of a different system (Brownian Weeks–Chandler–Andersen particles). Finally, we train a network on a set of phenomenological kernels and demonstrate its effectiveness in generalizing to both unseen phenomenological examples and supercooled hard-sphere MCT data. We provide a general pipeline, KernelLearner, for training networks to extract memory kernels from any non-Markovian system described by a GLE. The success of our DNN method applied to noisy glassy systems suggests that deep learning can play an important role in the study of dynamical systems with memory.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3