Phase spaces that cannot be cloned in classical mechanics

Author:

Yao Yuan1ORCID

Affiliation:

1. Department of Mathematics, University of California, Berkeley , Berkeley, California 94720, USA

Abstract

The quantum no cloning theorem is an essential result in quantum information theory. Following this idea, we give a physically natural definition of cloning in the context of classical mechanics using symplectic geometry, building on work of A. Fenyes, J. Math. Phys. 53, 012902 (2012). We observe, following Fenyes, any system with phase space (R2N,dxi∧dyi) can be cloned in our definition. However, we show that if (M, ω) can be cloned in our definition, then M must be contractible. For instance, this shows the simple pendulum cannot be cloned in Hamiltonian mechanics. We further formulate a robust notion of approximate cloning, and show that if (M, ω) can be approximately cloned, then M is contractible. We give interpretations of our results and in some special cases reconcile our no cloning theorems with the general experience that classical information is clonable. Finally we point to new directions of research, including a connection of our result with the classical measurement problem.

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3