Strain-induced anisotropic ion migration in single-crystal cesium lead halide perovskites

Author:

Cheenady Amith Adoor1ORCID,Rajan Krishna1ORCID

Affiliation:

1. Department of Materials Design and Innovation, University at Buffalo , Buffalo, New York 14260-1660, USA

Abstract

Ion migration adversely affects perovskite solar cell (PSC) performance by upsetting film stability, inducing hysteresis, and light-induced halide segregation. Ion migration is also substantially influenced by residual strains, which are prevalent in fabricated PSCs. This study thus utilizes molecular dynamics simulations to analyze the influence of uniaxial, biaxial, and isotropic states of compressive and tensile stresses on ion migration in single-crystal cesium lead iodide (CsPbI3) and bromide (CsPbBr3) perovskites. Furthermore, nudged elastic band simulations are used to reveal energy barriers associated with ion migration under mechanical deformation. Tensile and compressive strains are observed to intensify and inhibit ion migration, respectively, in these metal halide perovskites (MHPs), with the extent of this alteration becoming more drastic on progressing from uniaxial to isotropic state of stress. We also reveal that uniaxial and biaxial states of stresses induce anisotropic ion migration in CsPbI3, while ion migration remains isotropic under these loading conditions in CsPbBr3. The heightened ion migration under tension in these MHPs is deciphered to arise from lowering of the energy barrier, while migration inhibition under compression arises from increase in barrier height. This study thus provides direct evidence of tensile and compressive strains influencing ion migration in MHPs and highlights that methods such as lattice-strain tailoring that are aimed at mitigating this phenomenon may need to be customized to the MHP of interest.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3