Competition between full slip and twinning in BCC-Fe: Effect of preloaded stress and temperature

Author:

Veerababu J.12ORCID,Nagesha A.12ORCID

Affiliation:

1. Homi Bhabha National Institute 1 , Mumbai, Maharashtra 400 094, India

2. Mechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research 2 , Kalpakkam 603 102, India

Abstract

Slip or twinning is one of the fundamental questions in the deformation studies of metals and alloys. Internal parameters such as generalized stacking fault energy and size and external parameters such as pressure, strain rate, and temperature influence the competition between the full slip and twinning, thus dictating the predominance of one mechanism over the other. In the present investigation, we studied the influence of preloaded stress and temperature on the deformation behavior of BCC-Fe nanowires using molecular dynamics simulations and theoretical analysis. Based on detailed investigations into the energetics associated with slip and twinning, we observed that twinning is the preferred deformation mechanism in BCC-Fe. However, this has been modified by preloaded stresses applied in normal, transverse, and both directions on the nanowire. We observed a slip on {110}, on {112}, and even on {123} planes. The temperature did not alter the inherent twinning nature but linearly decreased the various fault energies.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3