Self-tuning Hamiltonian Monte Carlo for accelerated sampling

Author:

Christiansen Henrik1ORCID,Errica Federico1ORCID,Alesiani Francesco1ORCID

Affiliation:

1. NEC Laboratories Europe GmbH , Kurfürsten-Anlage 36, 69115 Heidelberg, Germany

Abstract

The performance of Hamiltonian Monte Carlo simulations crucially depends on both the integration timestep and the number of integration steps. We present an adaptive general-purpose framework to automatically tune such parameters based on a local loss function that promotes the fast exploration of phase space. We show that a good correspondence between loss and autocorrelation time can be established, allowing for gradient-based optimization using a fully differentiable set-up. The loss is constructed in such a way that it also allows for gradient-driven learning of a distribution over the number of integration steps. Our approach is demonstrated for the one-dimensional harmonic oscillator and alanine dipeptide, a small protein commonly used as a test case for simulation methods. Through the application to the harmonic oscillator, we highlight the importance of not using a fixed timestep to avoid a rugged loss surface with many local minima, otherwise trapping the optimization. In the case of alanine dipeptide, by tuning the only free parameter of our loss definition, we find a good correspondence between it and the autocorrelation times, resulting in a >100 fold speedup in the optimization of simulation parameters compared to a grid search. For this system, we also extend the integrator to allow for atom-dependent timesteps, providing a further reduction of 25% in autocorrelation times.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3