Indirect inverse flux mapping of a concentrated solar source using infrared imaging

Author:

Abuseada Mostafa1,Alghfeli Abdalla1,Fisher Timothy S.1ORCID

Affiliation:

1. Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, California 90095, USA

Abstract

With the growing interest in high-flux solar sources, a need exists for simple, accurate, and inexpensive strategies to characterize their output radiative flux. In this paper, the irradiation output from a 10 kWe xenon lamp solar simulator is characterized by an inverse mapping technique that uses a custom radiometer and infrared camera, validated by a direct characterization method (heat flux gauge). The heat flux distribution is determined in a vacuum chamber using an easily obtainable graphite target and an inverse heat transfer model. The solar simulator produces peak fluxes in the range of 1.5–4.5 MW/m2 as measured directly by a heat flux gauge, and its output can be controlled using a variable power supply. Spectral measurements indicate that minor variations in the simulator’s output with respect to its current supply occur in the spectral range of 450–800 nm. The radiometer presented in this work allows for characterizing solar irradiation under practical conditions (e.g., inside a solar reactor) and thus accounts for deviations due to additional components, such as viewport effects. Additionally, it provides an inexpensive and efficient means of monitoring any deterioration in the performance of solar sources over time without the need for complex recalibration.

Funder

UCLA CNSI Noble Family Innovation Fund

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3