Graph neural networks classify molecular geometry and design novel order parameters of crystal and liquid

Author:

Ishiai Satoki1ORCID,Endo Katsuhiro1ORCID,Yasuoka Kenji1ORCID

Affiliation:

1. Department of Mechanical Engineering, Keio University , Yokohama 223-8522, Japan

Abstract

Molecular dynamics simulation produces three-dimensional data on molecular structures. The classification of molecular structure is an important task. Conventionally, various order parameters are used to classify different structures of liquid and crystal. Recently, machine learning (ML) methods have been proposed based on order parameters to find optimal choices or use them as input features of neural networks. Conventional ML methods still require manual operation, such as calculating the conventional order parameters and manipulating data to impose rotational/translational invariance. Conversely, deep learning models that satisfy invariance are useful because they can automatically learn and classify three-dimensional structural features. However, in addition to the difficulty of making the learned features explainable, deep learning models require information on large structures for highly accurate classification, making it difficult to use the obtained parameters for structural analysis. In this work, we apply two types of graph neural network models, the graph convolutional network (GCN) and the tensor embedded atom network (TeaNet), to classify the structures of Lennard-Jones (LJ) systems and water systems. Both models satisfy invariance, while GCN uses only length information between nodes. TeaNet uses length and orientation information between nodes and edges, allowing it to recognize molecular geometry efficiently. TeaNet achieved a highly accurate classification with an extremely small molecular structure, i.e., when the number of input molecules is 17 for the LJ system and 9 for the water system, the accuracy is 98.9% and 99.8%, respectively. This is an advantage of our method over conventional order parameters and ML methods such as GCN, which require a large molecular structure or the information of wider area neighbors. Furthermore, we verified that TeaNet could build novel order parameters without manual operation. Because TeaNet can recognize extremely small local structures with high accuracy, all structures can be mapped to a low-dimensional parameter space that can explain structural features. TeaNet offers an alternative to conventional order parameters because of its novelty.

Funder

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3