What is the origin of slow relaxation modes in highly viscous ionic liquids?

Author:

Eliasen Kira L.1ORCID,Gabriel Jan1ORCID,Blochowicz Thomas2ORCID,Gainaru Catalin P.3ORCID,Christensen Tage E.1,Niss Kristine1ORCID

Affiliation:

1. “Glass and Time,” IMFUFA, Department of Science and Environment, Roskilde University 1 , Roskilde 4000, Denmark

2. Institut für Festkörperphysik, Technische Universität Darmstadt 2 , Darmstadt 64289, Germany

3. Chemical Sciences Division, Oak Ridge National Laboratory 3 , Oak Ridge, Tennessee 37831, USA

Abstract

Room temperature ionic liquids (RTILs) are molten salts consisting entirely of ions and have over the past decades gained increased interest due to their high potential in applications. These structurally complex systems often display multiple relaxation modes in the response functions at lower frequencies, hinting to complex underlying mechanisms. While the existence of these multimodal spectra in the shear mechanical, dielectric, and light scattering response of RTILs has been confirmed multiple times, controversy still surrounds the origin. This paper, therefore, aims to provide additional insights into the multimodal spectra seen in RTILs by presenting new shear mechanical results on seven different RTILs: Pyr1n-TFSI with n = 4, 6, and 8; Pyr18-TFSI mixed with Li-TFSI in two high concentrations; and Cn-mim-BF4 with n = 3 and 8. Dynamic depolarized light scattering was also measured on one of the Pyr18-TFSI Li-salt mixtures. These specific cases were analyzed in detail and put into a bigger perspective together with an overview of the literature. Recent literature offers two specific explanations for the origin of the multimodal shear mechanical spectra: (1) cation–anion time scale separation or (2) combined cation–anion relaxation in addition to a dynamic signal from mesoscale aggregates at lower frequencies. However, neither of these two pictures can consistently explain all the results on different ionic liquids. Instead, we conclude that the origin of the multimodal spectrum is system specific. This underlines the complexity of this class of liquids and shows that great care must be taken when making general conclusions based on specific cases.

Funder

Independent Research Fund Denmark

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3