Affiliation:
1. Department of Mechanical Engineering, Sogang University, Seoul 04107, South Korea
2. Institute of Emergent Materials, Sogang University, Seoul 04107, South Korea
Abstract
Gallium-based liquid metals (GBLMs) have both high fluidity and electrical conductivity and have recently raised great hopes with the promise of realizing soft electronics. By soft electronics, we mean electronic components that can retain their function while being bent and elongated. However, a nanometer-thick oxide skin forms on the GBLM surface, causing atypical interfacial behaviors, and the underlying physics remains unclear. Here, we present the results of a combined experimental and theoretical investigation of the dependence of contact angle of liquid phase eutectic gallium–indium (EGaIn) with oxide skin on van der Waals attraction. Our experiments showed that when EGaIn has an oxide skin, only the static advancing contact angle, not the equilibrium and static receding contact angles, can be specified. We suggest a mathematical model that explains how the static advancing contact angle of EGaIn depends on van der Waals force and the tension exerted on the oxide skin, elucidating the physics that determines the contact angle of EGaIn with the oxide skin in microscopic analysis. Our study helps us to better understand the interface of GBLMs, providing new insight into microfabrication techniques for GBLMs.
Funder
National Research Foundation of Korea
Korea Institute of Energy Technology Evaluation and Planning
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献