Analysis of liquid surface deformation and breakups using three-dimensional high-speed data recorded with a single camera

Author:

Roth Adrian1ORCID,Sapik Marcel2,Kristensson Elias1,Jedelsky Jan2ORCID,Berrocal Edouard1ORCID

Affiliation:

1. Division of Combustion Physics, Department of Physics, Lund University, Lund, Sweden

2. Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic

Abstract

Analyzing the deformation of liquid surfaces to better understand, for example, wave generation in oceanology or the formation of industrial spray systems, requires a series of three-dimensional snapshots that temporally resolve such events. This requirement is challenging, especially when applied to transient liquid surfaces that deform rapidly. A technique called Fringe Projection-Laser Induced Fluorescence (FP-LIF), developed by the authors, generates three-dimensional surface reconstructions of irregular liquid structures using snapshots recorded via a single camera only. In this article, FP-LIF is associated, for the first time, with a high-speed detection system, allowing the three-dimensional visualization of liquid surface deformation and breakups at a kHz frame rate. The technique is applied here at 20 kHz for imaging the complete development of a wide hollow-cone water spray and analyzing, in detail, the transition from early injection to stabilization. The three-dimensional image series covered a total time window of 300 ms (6000 frames). It is observed during the first 100 ms that the initial liquid jet deforms into a stable tulip shaped sheet. Then, between 100 and 180 ms, the tulip shape gradually grows until its stabilization corresponds to the final conical shaped sheet. Once the stabilization is reached, the fluctuation of the final spray-angle—ranging from 40° to 50°—is extracted by post-processing 1000 consecutive three-dimensional images, providing a detailed analysis of the radial symmetry of the spray over time and three-dimensional space. The results provided in this article are relevant for the validation of Computational Fluid Dynamics spray models.

Funder

European Research Council

INTER EXCELLENCE by the Ministry of Education, Youth and Sports of the Czech Republic

Vetenskapsrådet

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3