Unsteady dissipation scaling of grid turbulence in the near-field region

Author:

Zheng YulinORCID,Koto NaoyaORCID,Nagata KojiORCID,Watanabe TomoakiORCID

Abstract

This paper investigates global (long-time-averaged) and local (short-time-averaged) statistics in the near-field region of static-grid turbulence through wind tunnel experiments. Measurements are performed in the region x/M<32 (where x is the streamwise distance from the grid and M is the mesh size of the grid) using hot-wire anemometry. Local statistics are calculated according to the methodology used in the previous time-dependent analysis [Zheng et al., “Unsteady dissipation scaling in static- and active-grid turbulence,” J. Fluid Mech. 956, A20 (2023)]. The global dimensionless dissipation rate Cϵ exhibits a power-law decay with respect to the global turbulent Reynolds number Reλ and the global length scale ratio L/λ (where L is the integral length scale and λ is the Taylor microscale) is constant in the near-field region, consistent with previous studies on regular- and fractal-grid turbulence. The local dimensionless dissipation rate and the local length scale ratio also obey nonequilibrium scaling laws in both near- and far-field regions of grid turbulence when the turbulent Reynolds number is locally high, whereas the nonequilibrium scaling laws for the global statistics only hold in the near-field region.

Funder

JSPS KAKENHI

JSPS bilateral programs

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3