Entrainment, stopping, and transmission of microwave solitons of self-induced transparency in counter-propagating magnetized electron beam

Author:

Sergeev A. S.1ORCID,Yurovskiy L. A.1ORCID,Ginzburg N. S.1ORCID,Zotova I. V.1ORCID,Zheleznov I. V.1ORCID,Rozental R. M.1ORCID,Rostuntsova A. A.12ORCID,Ryskin N. M.2ORCID

Affiliation:

1. Institute of Applied Physics of Russian Academy of Sciences, 46 Ul'yanova St., Nizhny Novgorod 603950, Russia

2. Saratov Branch, Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, 38 Zelenaya St., Saratov 410019, Russia

Abstract

Based on numerical simulations of a boundary problem, we study various scenarios of microwave soliton formation in the process of cyclotron resonance interaction of a short electromagnetic pulse with a counter-propagating initially rectilinear electron beam taking into account the relativistic dependence of the cyclotron frequency on the electrons’ energy. When a certain threshold in the pulse energy is exceeded, the incident pulse can propagate without damping in the absorbing beam, similar to the effect of self-induced transparency in optics. However, mutual motion of the wave and electrons can lead to some novel effects. For relatively small energy of the incident pulse, the microwave soliton is entrained by the electron beam opposite to the direction of the wave's group velocity. With an increase in the pulse energy, soliton stopping occurs. This regime is characterized by the close-to-zero pulse velocity and can be interpreted as a variety of the “light stopping.” High-energy microwave solitons propagate in the direction of the unperturbed group velocity. Their amplitude may exceed the amplitude of the incident pulse, i.e., nonlinear self-compression takes place. A further increase in the incident energy leads to the formation of additional high-order solitons whose behavior is similar to that of the first-order ones. The characteristics of each soliton (its amplitude and duration) correspond to analytical two-parametric soliton solutions that are to be found from consideration of the unbounded problem.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3