Computational and experimental studies on band alignment of ZnO/InxGa2−xO3/GaN heterojunctions

Author:

Liu Xilai1ORCID,Zhao Chunxiang12,Niu Chunyao1ORCID,Jia Yu123

Affiliation:

1. International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University 1 , Zhengzhou 450001, China

2. Key Laboratory for Special Functional Materials of Ministry of Education, and School of Material Science and Engineering, Henan University 2 , Kaifeng 475004, China

3. Key Laboratory for Quantum Materials Science, and Center for Topological Functional Materials, Henan University 3 , Kaifeng 475004, China

Abstract

The ZnO/GaN heterojunctions are extensively investigated now, owing to their good luminescent properties and devisable capability to form efficient hybrid structures. An electron-blocking layer inserted into heterojunctions can greatly change their properties. In this work, n-ZnO/β-InxGa2−xO3/p-GaN heterojunctions have been successfully formed using atomic layer deposition methods. We show that the doping of In can effectively tune the band edges of the heterojunctions. First-principle calculations reveal that the bandgap of bulk β-InxGa2−xO3 shrinks linearly with the increase in In contents, accompanied by an upward movement of the valence band maximum and a downward movement of the conduction band minimum. As the indium concentrations increase, the valence band offsets show an upward movement at both the InxGa2−xO3/GaN and ZnO/InxGa2−xO3 interfaces, while the conduction band offsets present different trends. A broad, reddish yellow-green emission appears after In doping, which verifies the effect of band alignment. What is more, we show that the amorphization of InxGa2−xO3 can play an important role in tuning the band edge. This work provides access to a series of band offsets tunable heterojunctions and can be used for the further design of direct white light-emitting diodes without any phosphors, based on this structure.

Funder

National Natural Science Foundation of China

Henan Provincial Key Science and Techology Research Project

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3