Stability analysis for laminar separation flutter of an airfoil in the transitional flow regime

Author:

Yu Qiuyang1,Li Xintao1ORCID,Zhang Weiwei2ORCID,Xu Shengjin1

Affiliation:

1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Abstract

Laminar separation flutter (LSF) is a type of aeroelastic instability phenomenon characterized by small-amplitude low-frequency pitching oscillations of the airfoil. The present study aims to gain insight into the intrinsic dynamics of LSF via data-driven stability analysis. The proposed data-driven approach relies on the autoregressive with exogenous input (ARX) technique to design reduced-order models (ROMs) of unsteady aerodynamics in a state-space format. First, high-fidelity full-order numerical simulations of the LSF phenomenon are performed using the incompressible Unsteady Reynolds-Averaged Navier–Stokes equations and the Shear-Stress Transport [Formula: see text] turbulence model with Low-Reynolds-number correction. The calculated LSF responses show good agreement with previous experimental data in the literature. Then, linear stability analysis (LSA) of the aeroelastic system is carried out to reveal the underlying fluid-structure interaction mechanism. The LSA model is developed by coupling the ROM with the structure motion equation. LSA results indicate that the LSF phenomenon is primarily caused by the instability of the structure mode (SM), which is induced by the mutual repulsion effect between one static fluid mode (FM) and the SM. The presence of laminar separation near the trailing-edge of the airfoil can significantly reduce the stability of the static FM, which ultimately strengthens the fluid-structure coupling effect and leads to LSF. We would like to emphasize that LSF is essentially different from other flow-induced vibration phenomena, such as transonic buffeting of an airfoil and vortex-induced vibration of bluff bodies, for which the instabilities are triggered by the coupling between one dynamic FM and the SM. Finally, the effects of the mass ratio, structural damping ratio, and freestream turbulence intensity on the aeroelastic system are also investigated.

Funder

Aeronautical Science Foundation of China

Chinese Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3