Manipulation of γ-ray polarization in Compton scattering

Author:

Wang Yu1ORCID,Ababekri Mamutjan1,Wan Feng1ORCID,Wen Jia-Xing2ORCID,Wei Wen-Qing1ORCID,Li Zhong-Peng1ORCID,Kang Hai-Tao1ORCID,Zhang Bo2ORCID,Zhao Yong-Tao1ORCID,Zhou Wei-Min2ORCID,Li Jian-Xing1ORCID

Affiliation:

1. Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University 1 , Xi'an 710049, China

2. Key Laboratory of Plasma Physics, Research Center of Laser Fusion, China Academy of Engineering Physics 2 , Mianshan Rd. 64#, Mianyang, Sichuan 621900, China

Abstract

High-brilliance high-polarization γ rays based on Compton scattering are of great significance in broad areas, such as nuclear physics, high-energy physics, astrophysics, etc. However, the transfer mechanism of spin angular momentum in the transition from linear through weakly into strongly nonlinear processes is still unclear, which severely limits the simultaneous control of brilliance and polarization of high-energy γ rays. In this work, we clarify the transfer mechanism in the transition regions and put forward a clear way to efficiently manipulate the polarization of emitted photons. We find that to simultaneously generate high-energy, high-brilliance, and high-polarization γ rays, it is better to increase the laser intensity for the initially spin-polarized electron beam. However, for the case of employing the initially spin-nonpolarized electron beam, in addition to increasing laser intensity, it is also necessary to increase the energy of the electron beam. Because the γ photon polarization emitted through the single-photon absorption channel is mainly attributed to the spin transfer of laser photons, while in multi-photon absorption channels, the electron spin plays a major role. Moreover, we confirm that the signature of γ-ray polarization can be applied to observing the nonlinear effects (multi-photon absorption) of Compton scattering with moderate-intensity laser facilities.

Funder

Shaanxi Fundamental Science Research Project for Mathematics and Physics

Foundation of Science and Technology on Plasma Physics laboratory

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3