Predictive method for flow condensation heat transfer in plain channels

Author:

Fang Xiande1ORCID,Li Xiaohuan1ORCID,Luo Zufen1ORCID

Affiliation:

1. Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China

Abstract

The flow condensation heat transfer (FCHT) in plain channels has a variety of applications in many industrial sectors, and thus it is important to predict FCHT coefficients accurately. This paper compiled a large compound FCHT database containing 5607 data points and 30 fluids and presented a strategy for developing a new correlation of FCHT coefficients. The parameter range of the database is the hydraulic diameter D =  0.493–20 mm, vapor quality x =  0.003–0.992, mass flux G =  24–1533 kg/m2 s, heat flux q =  2.9–422 kW/m2, reduced pressure pr = 0.04–0.95, liquid Prandtl number Prl = 1.7–8.5, liquid Reynolds number Rel = 11.6–5.3 × 104, and gas Reynolds number Reg = 75.1–9.1 × 105. Based on the database and strategy, a new general correlation with substantially better accuracy was developed, which is applicable to plain channels of various sizes and a broad operational parameter range. It predicts the database with a mean absolute deviation (MAD) of 14.1%, while the best existing Δ T-independent correlation predicts the database with an MAD of 20.2%. The applicability of the new and 38 existing correlations to individual fluids was assessed. The new correlation performs best for 8 of the 14 fluids that have more than 50 data points in the entire database, while the most accurate existing one performs best only for 2 of them. The Fang number Fa plays an important role in the new correlation, implying that it relates to the fundamental mechanisms of both boiling and condensation heat transfer.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3