First demonstration of a fiber optic bolometer on a tokamak plasma (invited)

Author:

Lee S.1ORCID,Shafer M.2ORCID,Reinke M.3,Uddin N.4,Sheng Q.4ORCID,Han M.4ORCID,Donovan D.1ORCID,O’Neill R.5

Affiliation:

1. Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA

2. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

3. Commonwealth Fusion Systems, Cambridge, Massachusetts 02139, USA

4. Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA

5. General Atomics, San Diego, California 92121-1122, USA

Abstract

A fiber optic bolometer (FOB) was demonstrated observing a fusion plasma for the first time at the DIII-D tokamak. A FOB uses a fiber optics-based interferometric technique that is designed to have a high sensitivity to temperature changes [75 mK/(W/m2) responsivity in high vacuum with 0.38 mK noise level] with a negligible susceptibility to electromagnetic interference (EMI) that can be problematic for resistive bolometers in a tokamak environment. A single-channel test apparatus was installed on DIII-D consisting of a measurement FOB and shielded reference FOB. The single-channel FOB showed a negligible increase in the noise level during typical plasma operations (0.39 mK) compared to the benchtop results (0.38 mK), confirming an insignificant EMI impact to the FOB. Comparisons to DIII-D resistive bolometers showed good agreement with the single-channel FOB, indicating that the FOB is comparable to a resistive bolometer when the impulse calibration is applied. The noise-equivalent power density of the calibrated FOB during a plasma operation was 0.55 W/m2 with an average sampling time of 20 ms. The major potential effect of ionizing radiation on the FOB would be the radiation-induced attenuation, which can be efficiently compensated for by adjusting the probing light power.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3