Surface science and liquid phase investigations of oxanorbornadiene/oxaquadricyclane ester derivatives as molecular solar thermal energy storage systems on Pt(111)

Author:

Hemauer Felix1ORCID,Krappmann Daniel2ORCID,Schwaab Valentin1ORCID,Hussain Zarah3ORCID,Freiberger Eva Marie1ORCID,Waleska-Wellnhofer Natalie J.1ORCID,Franz Evanie3ORCID,Hampel Frank4ORCID,Brummel Olaf3ORCID,Libuda Jörg35ORCID,Hirsch Andreas2ORCID,Steinrück Hans-Peter15ORCID,Papp Christian156ORCID

Affiliation:

1. Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg 1 , Egerlandstr. 3, 91058 Erlangen, Germany

2. Lehrstuhl für Organische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg 2 , Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany

3. Lehrstuhl für Katalytische Grenzflächenforschung, Friedrich-Alexander-Universität Erlangen-Nürnberg 3 , Egerlandstr. 3, 91058 Erlangen, Germany

4. Lehrstuhl für Organische Chemie I, Friedrich-Alexander-Universität Erlangen-Nürnberg 4 , Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany

5. Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg 5 , Egerlandstr. 3, 91058 Erlangen, Germany

6. Physikalische und Theoretische Chemie, Freie Universität Berlin 6 , Arnimallee 22, 14195 Berlin, Germany

Abstract

The transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved. In this study, we investigate the surface chemistry of oxa-norbornadiene/quadricyclane derivatives on a Pt(111) surface. Specifically, we focus on the energy storage and release properties of molecules that are substituted with ester moieties of different sizes. For our model catalytic approach, synchrotron radiation-based x-ray photoelectron spectroscopy measurements were conducted in ultra-high vacuum (UHV) and correlated with the catalytic behavior in the liquid phase monitored by photochemical infrared reflection absorption spectroscopy. The differences in their spectral appearance enabled us to unambiguously differentiate the energy-lean and energy-rich isomers and decomposition products. Next to qualitative information on the adsorption motifs, temperature-programmed experiments allowed for the observation of thermally induced reactions and the deduction of the related reaction pathways. We analyzed the selectivity of the cycloreversion reaction from the energy-rich quadricyclane derivative to its energy-lean norbornadiene isomer and competing processes, such as desorption and decomposition. For the 2,3-bis(methylester)-substitution, the cycloreversion reaction was found to occur between 310 and 340 K, while the thermal stability limit of the compounds was determined to be 380 K. The larger 2,3-bis(benzylester) derivatives have a lower apparent adsorption energy and a decomposition onset already at 135 K. In the liquid phase (in acetonitrile), we determined the rate constants for the cycloreversion reaction on Pt(111) to k = 5.3 × 10−4 s−1 for the 2,3-bis(methylester)-substitution and k = 6.3 × 10−4 s−1 for the 2,3-bis(benzylester) derivative. The selectivities were of >99% and 98% for the two molecules, respectively. The difference in the catalytic behavior of Pt(111) for both derivatives is less pronounced in the liquid phase than in UHV, which we attribute to the passivation of the Pt(111) surface by carbonaceous species under ambient conditions.

Funder

Deutsche Forschungsgemeinschaft

Research Unit FOR 5499

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3