Dynamic phase change materials with extended surfaces

Author:

Stavins Robert A.1ORCID,Kim Soonwook1ORCID,Meddling Amari1,Garimella Vivek S.1ORCID,Koronio Elad2ORCID,Shockner Tomer2ORCID,Ziskind Gennady2ORCID,Miljkovic Nenad1345678ORCID,King William P.13457ORCID

Affiliation:

1. Mechanical Science and Engineering, University of Illinois at Urbana Champaign 1 , Urbana, Illinois 61801, USA

2. Department of Mechanical Engineering, Ben-Gurion University of the Negev 2 , Beer-Sheva 84105, Israel

3. Materials Science and Engineering, University of Illinois at Urbana Champaign 3 , Urbana, Illinois 61801, USA

4. Materials Research Laboratory, University of Illinois at Urbana-Champaign 4 , Urbana, Illinois 61801, USA

5. Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 5 , Urbana, Illinois 61801, USA

6. Institute for Sustainability, Energy and Environment (iSEE), University of Illinois 6 , Urbana, Illinois 61801, USA

7. Electrical and Computer Engineering, University of Illinois at Urbana Champaign 7 , Urbana, Illinois 61801, USA

8. International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University 8 , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract

Phase change materials (PCMs) present opportunities for efficient thermal management due to their high latent heat of melting. However, a fundamental challenge for PCM cooling is the presence of a growing liquid layer of relatively low thermal conductivity melted PCM that limits heat transfer. Dynamic phase change material (dynPCM) uses an applied pressure to pump away the melt layer and achieve a thin liquid layer, ensuring high heat transfer for extended periods. This paper investigates heat transfer during dynPCM cooling when the heated surface has extended features made from high thermal conductivity copper (Cu). Using experiments and finite element simulations, we investigate the heat transfer performance of dynPCM paraffin wax on finned Cu surfaces. A total of 102 transient temperature measurements characterize the performance of dynPCM with extended surfaces and compare the performance with other cooling methods including hybrid PCM and air cooling. The study examines the effects of fin geometry, applied power (20–65 W), and pressure (0.97–12.5 kPa). For dynPCM on a finned surface and a heating power of 65 W, the thermal conductance is 0.45 W/cm2-K, compared to 0.22 W/cm2-K for dynPCM on a flat surface and 0.10 W/cm2-K for hybrid PCM. The heat transfer is highest at the fin tips where the melt layer is thinnest, providing valuable design guidelines for future high performance dynPCM cooling technologies.

Funder

Office of Naval Research

Japanese ministry of eductation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3