Mask-less nano-structuring of hydrogen terminated diamond using localized field emission scanning probe lithography (FE-SPL)

Author:

Yianni Steve A.1ORCID,Hofmann Martin2,Schenk Alex K.1ORCID,Reuter Christoph3ORCID,Rangelow Ivo W.34ORCID,Pakes Christopher I.1ORCID

Affiliation:

1. Department of Mathematics and Physics, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Victoria 3086, Australia

2. Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystrasse 10, D-91058 Erlangen, Germany

3. nano analytik GmbH, Ehrenbergstraße 3, 98693 Ilmenau, Germany

4. Technische Universität Ilmenau, Nanoscale Systems Group, Gustav-Kirchhoff-Straße 1, 98693 Ilmenau, Germany

Abstract

Sensing and manipulating a particle's spin promise the development of more energy efficient and ultra-fast devices. Diamond is a promising candidate for spintronics and quantum systems, where nano-structuring of diamond surfaces on nanometer length scales is required. Here, direct-write modification of a diamond surface at sub-50 nm resolution is demonstrated. This is achieved with an atomic force microscope tip used as a spatially localized field emission source or so-called field-emission scanning probe lithography on a sample in ambient conditions, which are rendered conductive only through the surface conductivity of hydrogen-terminated diamond. Mask-less direct structuring of the diamond surface is observed, creating features of depth in the range of 4–8 nm and linewidths of 70–150 nm, as well as the desorption of hydrogen from the surface achieving minimum linewidths of 40 nm. Both the linewidth and depth of etching appear to depend on the energy of emitted electrons and the resulting electron exposure dose. These findings demonstrate the possibility of controllably nano-structuring diamond surfaces with features over micrometer length scales and with sub-50 nm resolution, while held under ambient conditions.

Funder

Deutsches Forschungsgemeinschaft

La Trobe Institute for Molecular Science, La Trobe University

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3