Mechanism of active flow control using a novel spike aerodome-channel concept in the hypersonic flow: A numerical study

Author:

Meng Yu-shan,Wang Zhong-wei,Huang WeiORCID,Niu Yao-bin,Xie ZanORCID

Abstract

Among the design requirements of hypersonic vehicles, reducing aerodynamic heating and drag force simultaneously is the main challenge. This paper proposes a novel spike aerodome-channel combination concept to realize the flow field reconstruction around the hypersonic blunt body. The novel configuration is investigated in the axisymmetric flow at a Mach number of 6 at zero angle of attack. The two-dimensional Reynold-averaged Navier–Stokes equations are numerically solved, and the shear-stress transport k–ω model is the turbulence model implemented in this study. Parameters such as spike length and lateral jet location are investigated to explore the drag and heat reduction performance and the flow control features. The obtained results show that the application of the novel spike aerodome-channel concept alters the flow field by eliminating or replacing the strong bow shock wave, and the design of hypersonic vehicles can benefit from the application of the proposed concept. The blunt body coupled with a frustum of cone-tipped spike-channel configuration provides a remarkable drag reduction effect of 20.71% with respect to the case without channel. Considering the effect of lateral jet location, the drag reduction performance of the case with LR = 0.75 is superior to that of the root jet case at the same spike length, and a considerable drag reduction of 28.93% is obtained with L/D = 2.4. In addition, longer spike length is beneficial for improving drag reduction performance, while excellent efficiency of heat protection is obtained in a certain spike length range. For the case of L/D = 1.6 with root jet, the peak Stanton number is significantly decreased by 33.51%.

Funder

Natural Science Foundation of Hunan Province

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3