Few-femtosecond electronic and structural rearrangements of CH4+ driven by the Jahn–Teller effect

Author:

Zinchenko Kristina S.1ORCID,Ardana-Lamas Fernando1ORCID,Lanfaloni Valentina Utrio1ORCID,Monahan Nicholas1,Seidu Issaka2ORCID,Schuurman Michael S.2ORCID,Neville Simon P.2,Wörner Hans Jakob1ORCID

Affiliation:

1. Laboratory of Physical Chemistry, ETH Zürich 1 , 8093 Zürich, Switzerland

2. National Research Council of Canada 2 , Ottawa, Ontario, Canada

Abstract

The Jahn–Teller effect (JTE) is central to the understanding of the physical and chemical properties of a broad variety of molecules and materials. Whereas the manifestations of the JTE in stationary properties of matter are relatively well studied, the study of JTE-induced dynamics is still in its infancy, largely owing to its ultrafast and non-adiabatic nature. For example, the time scales reported for the distortion of CH4+ from the initial Td geometry to a nominal C2v relaxed structure range from 1.85 fs over 10 ± 2 fs to 20 ± 7 fs. Here, by combining element-specific attosecond transient-absorption spectroscopy and quantum-dynamics simulations, we show that the initial electronic relaxation occurs within 5 fs and that the subsequent nuclear dynamics are dominated by the Q2 scissoring and Q1 symmetric stretching modes, which dephase in 41 ± 10 fs and 13 ± 3 fs, respectively. Significant structural relaxation is found to take place only along the e-symmetry Q2 mode. These results demonstrate that CH4+ created by ionization of CH4 is best thought of as a highly fluxional species that possesses a long-time-averaged vibrational distribution centered around a D2d structure. The methods demonstrated in our work provide guidelines for the understanding of Jahn–Teller driven non-adiabatic dynamics in other more complex systems.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

European Research Council

Publisher

AIP Publishing

Subject

Spectroscopy,Condensed Matter Physics,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3