Hybrid Zakharov-kinetic simulation of nonlinear stimulated Raman scattering

Author:

Sary G.12ORCID,Gremillet L.12ORCID

Affiliation:

1. CEA, DAM, DIF, F-91297 Arpajon, France

2. Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France

Abstract

We present a novel 2D reduced numerical model for stimulated Raman scattering (SRS) in laser fusion plasmas in which envelope equations for the electromagnetic fields are coupled to a hybrid description of the electron species. Specifically, the electron distribution is split between a bulk part described by a Zakharov-like linear model and a kinetic tail discretized using a particle-in-cell-like (PIC) scheme. By avoiding to sample the bulk-electron distribution, this approach greatly reduces the numerical cost of SRS simulations compared with PIC codes, while still being able to describe the nonlinear evolution of the electron tail and trapping-related kinetic phenomena. First, our model is shown to reproduce accurately the linear Landau damping of an infinitesimal electron plasma wave (EPW) whose phase velocity falls into the tail of the electron distribution. Then, applying it to the simulation of the trapped-particle modulational instability of a large-amplitude EPW, results comparable to those of previously published 2D Vlasov simulations are obtained. Finally, we simulate the excitation of kinetic backward SRS from a single strong laser speckle ([Formula: see text]) in an underdense ([Formula: see text]) plasma, which drives an EPW with wavenumber [Formula: see text]. The model predictions fairly agree with the results of a PIC simulation regarding the kinetic saturation mechanisms (i.e., trapped-particle instabilities), and with experimental data and Vlasov simulations related to the frequency shift of nonlinear EPWs. For this SRS simulation, we estimate that our hybrid model is over an order of magnitude less costly than an equivalent PIC simulation due to the lower particle count.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3