Orientation effects on near-field radiative heat transfer between complex-shaped dielectric particles

Author:

Walter Lindsay P.1ORCID,Francoeur Mathieu1ORCID

Affiliation:

1. Radiative Energy Transfer Lab, Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA

Abstract

The effect of orientation on near-field radiative heat transfer between two complex-shaped superellipsoid particles of SiO2 is presented. The particles under study are 50 nm in radius and of variable concavity. Orientation is characterized by the degree of rotational symmetry in the two-particle systems, and the radiative conductance is calculated using the discrete system Green's function approach to account for all electromagnetic interactions. The results reveal that the total conductance in some orientations can be up to twice that of other orientations when particles are at a center-of-mass separation distance of 110 nm. Orientation effects are not significantly correlated with system rotational symmetries but are strongly correlated with the minimum vacuum gap distance between particles. As such, orientation effects on near-field radiative heat transfer are a consequence of particle topology, with more extreme topologies leading to a continuation of orientation effects at larger particle center-of-mass separation distances. The concave superellipsoid particles display significant orientation effects up to a center-of-mass separation distance approximately equal to 3.9 times the particle radius, while the convex superellipsoid particles display significant orientation effects up to a center-of-mass separation distance approximately equal to 3.2 times the particle radius. In contrast to previous anisotropic, spheroidal dipole studies, these results of complex-shaped superellipsoid particles suggest that orientation effects become negligible when heat transfer is a volumetric process for all orientations. This work is essential for understanding radiative transport between particles that have non-regular geometries or that may have geometrical defects or abnormalities.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3