Characterization of the acoustic pressure waveforms in Rijke tubes with spatially varying heat sources and temperature distributions

Author:

Signor Emma T.1ORCID,Shelton Cody M.1ORCID,Majdalani Joseph1ORCID

Affiliation:

1. Department of Aerospace Engineering, 211 Davis Hall, Auburn University , Auburn, Alabama 36849-5338, USA

Abstract

In this work, we implement an asymptotic expansion technique that leverages a small perturbation parameter that arises in the context of one-dimensional tubes with open-open end point configurations and spatially varying heat sources. This approach, when paired with a spectral collocation eigensolver, enables us to produce accurate predictions of the pressure mode shapes and frequencies over a wide range of parameters. These include the temperature gain across the heat source, the heat source length and location, and the overall thermal profile. The latter is intended to reproduce different flow heating configurations that emulate Rijke tube characteristics. Specifically, this investigation begins by considering three piecewise representations of the heat source by juxtaposing constant–constant temperatures before and after a heating element whose temperature is prescribed locally using three analytical functions: linear, exponential, and power-law profiles. This is followed by a logistic distribution that can be globally applied to provide a uniformly valid, continuous, and differentiable thermal profile spanning the entire tube, including the heat source element. Our fundamental formulation relies on Green's functions and an integral formulation that enables us to extract all acoustic frequencies analytically. These are found to increase monotonically with successive elevations in the temperature gain across the heat source, retractions of the heat source, length reductions in the heat source, and smoothing of the temperature gain. Along similar lines, the pressure mode shapes are found to exhibit blunter and often linear variations for higher temperature gains, longer heat sources, and upstream displacements of the heat source toward the inlet.

Funder

National Science Foundation

Publisher

AIP Publishing

Reference39 articles.

1. The mechanics of Rijke tube;Q. Appl. Math.,1955

2. Stability of systems containing a heat source—The Rayleigh criterion,1956

3. Comments on Rijke tube;Sci. Am.,1961

4. Simplified analysis of the Rijke phenomenon;J. Acoust. Soc. Am.,1963

5. State of the art and research needs of pulsating combustion

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3