Granular roll waves on a μ (J) rheology model: A dynamical systems perspective

Author:

Kanellopoulos GiorgosORCID

Abstract

This paper focuses on the formation and the unique characteristics of granular roll waves generated by utilizing the depth-averaged dynamic model recently introduced by Fei et al. [Appl. Math. Modell. 119, 763–781 (2023)], which employs μ(J) rheology. Notably, the symmetrical shape of the generated roll waves deviates from the typical pattern observed in both dry granular and water roll waves, which demonstrate a gradually rising flank followed by a sudden drop. Through a dynamical systems analysis and the associated phase space diagrams, which provide a comprehensive geometrical overview, we reveal the mathematical properties associated with the stable-uniform flow and the emergence of the granular roll waves. We then delve into the correlation between the shape of these roll waves and the nullclines of the dynamical system, whose analytical expression is presented. Additionally, we highlight the qualitative similarities and differences between the aforementioned model for liquid-immersed flowing granular matter and its well-established counterpart for dry granular flows based on the μ(I) rheology.

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3