Core–shell structured PVDF-based copolymer fiber design for high energy storage performance

Author:

Sun Xindi1,Zhang Lingyu1,Zheng Yantao1,Yang Lu1,Deng Yuan23,Wang Yao13ORCID

Affiliation:

1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China

2. Research Institute for Frontier Science, Beihang University, Beijing 100191, China

3. Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, Zhejiang, China

Abstract

Polymer-based capacitors are very promising for high-power systems due to their high power density and ultrafast charge–discharge speed, yet reaching high dielectric constant and high breakdown strength simultaneously in dielectric polymers required by high-performance capacitors still remains a huge challenge. Herein, poly(vinylidene fluoride- co-trifluoroethylene) (PVDF-TrFE) and poly(vinylidene fluoride- co-hexafluoropropylene) (PVDF-HFP) were coaxial electrospun in core–shell structured fibers to create locally inhomogeneous microstructures deliberately. Through adjusting the functional group HFP/TrFE monomer ratio, P(VDF-HFP)/P(VDF-TrFE) hybrid polymer films with topological composition distribution have been elaborately designed, enabling gradient polarization distribution from core to shell. Compared with homogeneous hybrid films of the same composition, the core–shell structure significantly boosts breakdown strength, thus resulting in a significantly improved energy storage capacity. At an HFP/TrFE monomer ratio of 10:1, an optimal comprehensive energy storage performance has been achieved with Ue ∼ 20.7 J/cm3 and efficiency 67.8%; moreover, the film could maintain its energy storage performance after 106 charge/discharge cycles without reduction. Molecular dynamic simulation and finite element analysis have been employed in combination to reveal the dipole moments distribution at the molecular level and polarization distribution at the microscale, which further demonstrates that elaborate polarization distribution adjustment is an effective strategy toward high-performance electrostatic energy storage capacitors.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3