Egg-speriments: Stretch, crack, and spin

Author:

Bertho Yann1ORCID,Darbois Texier Baptiste1ORCID,Pauchard Ludovic1ORCID

Affiliation:

1. Université Paris-Saclay, CNRS, Laboratoire FAST, 91405 Orsay, France

Abstract

Eggs are key ingredients in our kitchens because of their nutritional values and functional properties such as foaming, emulsifying, and gelling, offering a wide variety of culinary achievements. They also constitute ideal objects to illustrate a myriad of scientific concepts. In this article, we focus on several experiments (egg-speriments) that involve the singular properties of the liquids contained inside the eggshell, especially the egg white. We first characterize the rheology of an egg white in a rotational rheometer for constant and oscillatory shear stresses revealing its shear-thinning behavior and visco-elastic properties. Then, we measure the tendency of the fluid to generate very long filaments when stretched that we relate to the shear modulus of the material. Second, we explore the anisotropic crack pattern that forms on a thin film of egg white after it is spread on a surface and let dried. The anisotropy results from the long protein chains present in the egg white, which are straightened during film deposition. Finally, we consider the “spin test” that permits to distinguish between raw and hard-boiled eggs. To do so, we measure the residual rotation of a spinning raw egg after a short stop, which reflects the continuation of the internal flow. These observations are interpreted in terms of viscous damping of the internal flow consistently with the measurements deduced from rheology.

Funder

Agence Nationale de la Recherche

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3