Aluminum substitution in low damping epitaxial lithium ferrite films

Author:

O'Mahoney Daisy12ORCID,Channa Sanyum23ORCID,Zheng Xin Yu24ORCID,Vailionis Arturas56ORCID,Shafer Padraic7ORCID,N'Diaye Alpha T.7ORCID,Klewe Christoph7ORCID,Suzuki Yuri24ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University 1 , Stanford, California 94305, USA

2. Geballe Laboratory for Advanced Materials, Stanford University 2 , Stanford, California 94305, USA

3. Department of Physics, Stanford University 3 , Stanford, California 94305, USA

4. Department of Applied Physics, Stanford University 4 , Stanford, California 94305, USA

5. Stanford Nano Shared Facilities, Stanford University 5 , Stanford, California 94305, USA

6. Department of Physics, Kaunas University of Technology 6 , LT-51368 Kaunas, Lithuania

7. Advanced Light Source, Lawrence Berkeley National Laboratory 7 , Berkeley, California 94720, USA

Abstract

Ferromagnetic insulators with ultra-low damping and tunable magnetic properties are of great interest for the study of spin wave-based phenomena as well as for applications in spin wave spintronics. We have developed epitaxial spinel structure ferrite thin films of Li0.5(AlxFe2.5−x)O4 (LAFO) with ultra-low magnetic damping. The degree of Al substitution tunes the saturation magnetization and in-plane magnetic anisotropy while maintaining excellent epitaxy and crystalline quality as well as low magnetic damping. All LAFO films, deposited on (001)-oriented MgAl2O4 (MAO), are under epitaxial compressive strain, giving rise to an easy magnetic axis in-plane and a hard out-of-plane axis. Element-specific x-ray magnetic circular dichroism measurements confirm that the magnetism originates from the majority of Fe3+ cations occupying the octahedral sites, which are displaced by increased Al3+ substitution. Broadband ferromagnetic resonance reveals the lowest Gilbert damping parameters of 5×10−4 for films 10–15 nm thick. Our films demonstrate the robustness of the low loss dynamic properties of Li0.5(AlxFe2.5−x)O4 that are promising for spin wave applications.

Funder

Division of Materials Sciences and Engineering

Air Force Office of Scientific Research

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3