Oscillation of the shock train under synchronous variation of incoming Mach number and backpressure

Author:

Wang Ziao1ORCID,Chang Juntao1ORCID,Li Yiming1,Chen Ruoyu1,Hou Wenxin1,Guo Jifeng1,Yue Lianjie2

Affiliation:

1. Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China

2. State Key Laboratory of High Temperature Gas Dynamics, Beijing 100190, People's Republic of China

Abstract

Experiments were conducted to characterize shock train oscillation under the simultaneous variation of the incoming Mach number and backpressure. Under steady and low-frequency oscillatory backpressure (2 Hz), the incoming Mach number varied from 1.8 to 2.4. According to the intersection of downgoing background wave with bottom front leg, Mach stem, and top front leg of the normal shock train leading edge, the normal shock train/background wave interaction can be divided into three types. Two types of oblique shock train/background wave interaction exist. The downgoing (upgoing) background wave upstream of the oblique shock train can cause the upgoing (downgoing) shock in the shock train leading edge to become the dominated shock. Two modes of shock train oscillation were found: oscillation mode 1, in which the shock train oscillated in the favorable gradient region of the relaxing boundary layer, and oscillation mode 2, where the shock train enters the adverse pressure gradient region caused by the impingement of background wave. Compared with mode 1, mode 2 leads to a larger upstream movement of the shock train and more intense pressure fluctuation. The oscillation of the shock train is caused by instability in the separation region behind the shock train leading edge. The oscillatory backpressure only affected the motion of shock train during each oscillation period. The overall movement trend of shock train is determined by the incoming Mach number and the mean value of backpressure. The increase of incoming Mach number and backpressure can lead to the enhancement of shock train oscillation.

Funder

State Key Laboratory of High Temperature Gas Dynamics

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3