Modulation of the dynamic response and stability of dielectric balloon by stretch-dependent dielectric permittivity

Author:

Xing Xinyu1,Chen Lingling1ORCID,Zhao Chuo1,Yang Shengyou12ORCID

Affiliation:

1. Department of Engineering Mechanics, School of Civil Engineering, Shandong University 1 , Jinan 250061, China

2. Digital Intelligence Construction Research Center, Shandong University-Shandong Tongfa Group 2 , Jinan 250013, China

Abstract

The dynamic response of dielectric elastomers is widely used in many functional devices, but current research has neglected the effect of varying dielectric permittivity on their dynamic oscillations and stability. This paper studies the thin-walled dielectric balloon in which the stretch-dependent dielectric permittivity is considered. We obtain the dynamic equation of motion by Hamilton’s principle. Based on the principle of no energy dissipation in conservative systems, we establish energy conservation at the maximum stretching position and at the initial moment, then we investigate the stability in the dynamic case. It is found that a stretch-related dielectric permittivity can increase the critical electric field of the balloon and can also change the mode of electric field instability and modulate the critical stretch value. In the dynamic case, the stretch-dependent permittivity increases the critical electric field by 4% when the balloon is only subjected to electric force; moreover, it increases the critical stretch value by 316.68% by changing the unstable mode from pull-in instability to snap-through instability. It is hoped that this work will provide new thinking in designing functional devices by using the dynamical response and stability of dielectric elastomers.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3