Liquid dripping dynamics and levitation stability control of molten Ti–Al–Nb alloy within electromagnetic fields

Author:

Liang C.1,Wang H. P.1ORCID,Zhang P. C.1,Wei B.1ORCID

Affiliation:

1. School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China

Abstract

The dripping dynamics of the electromagnetically levitated (EML) liquid Ti–Al–Nb alloy under high temperatures was investigated by both numerical simulation based on the Arbitrary Lagrangian–Eulerian method and corresponding EML experiments. A dripping formation parameter εD was defined to describe the critical shape of alloy droplet. According to the simulated results, the high-temperature dripping phenomenon took place when εD < 0.68, which was in good agreement with experimental data. When dripping event occurred, the Lorentz force applied on alloy droplet decreased by approximately 11.7% within 0.07 s. Three typical methods were accordingly proposed to avoid the dripping failure of a bulk liquid Ti–Al–Nb alloy, which was implemented by enhancing electric current, adjusting levitation coil diameter, or increasing coil winding number. To control the droplet shape, the deformation pattern and the flow behavior of the liquid alloy were studied in a wide current range from 700 to 1400 A. With the increase in excitation current, the cone-shaped alloy melt transformed to a rhombus, and the flow behavior transformed from a typical four toroidal flow vortexes up to a complex eight toroidal flow vortexes. Moreover, the centroid position of liquid alloy rose up significantly at first and then slowly approached to levitation ceiling.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3