Probing of the topological phase transition in a disordered 1D acoustic system

Author:

Li Shi-Feng1,Zhou Cui-Yu-Yang1ORCID,Lu Jie-Yu1,Zou Xin-Ye12ORCID,Cheng Jian-Chun12ORCID

Affiliation:

1. Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China

2. State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

Abstract

The methods to determine the Zak phase introduced by previous studies are usually limited to the periodic systems protected by the inversion symmetry. In this work, we build a one-dimensional chiral symmetric acoustic chain with controllable disorder to break its inversion symmetry. By the mean chiral displacement method, we detect the Zak phase in order to observe the topological phase transition induced purely by disorder. The finding exhibits the topological Anderson insulator phase, in which an otherwise trivial acoustic Su–Schrieffer–Heeger model is driven non-trivial by disorder accompanied by the change of the topological sign. This method could also be utilized in chiral symmetry broken and non-Hermitian systems. The result reveals that disorder introduced in the acoustic devices may induce the change of the topological phase, which is promising for the design of new acoustic devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3