Enhanced EMC—Advantages of partially known orientations in x-ray single particle imaging

Author:

Wollter August1ORCID,De Santis Emiliano2ORCID,Ekeberg Tomas1ORCID,Marklund Erik G.2ORCID,Caleman Carl34ORCID

Affiliation:

1. Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics 1 , Husargatan 3, 75124 Uppsala, Sweden

2. Department of Chemistry—BMC, Uppsala University 2 , Box 576, SE-751 23 Uppsala, Sweden

3. Department of Physics and Astronomy, Uppsala University 3 , Box 516, SE-751 20 Uppsala, Sweden

4. Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY 4 , Notkestraße 85, DE-22607 Hamburg, Germany

Abstract

Single particle imaging of proteins in the gas phase with x-ray free-electron lasers holds great potential to study fast protein dynamics, but is currently limited by weak and noisy data. A further challenge is to discover the proteins’ orientation as each protein is randomly oriented when exposed to x-rays. Algorithms such as the expand, maximize, and compress (EMC) exist that can solve the orientation problem and reconstruct the three-dimensional diffraction intensity space, given sufficient measurements. If information about orientation were known, for example, by using an electric field to orient the particles, the reconstruction would benefit and potentially reach better results. We used simulated diffraction experiments to test how the reconstructions from EMC improve with particles’ orientation to a preferred axis. Our reconstructions converged to correct maps of the three-dimensional diffraction space with fewer measurements if biased orientation information was considered. Even for a moderate bias, there was still significant improvement. Biased orientations also substantially improved the results in the case of missing central information, in particular in the case of small datasets. The effects were even more significant when adding a background with 50% the strength of the averaged diffraction signal photons to the diffraction patterns, sometimes reducing the data requirement for convergence by a factor of 10. This demonstrates the usefulness of having biased orientation information in single particle imaging experiments, even for a weaker bias than what was previously known. This could be a key component in overcoming the problems with background noise that currently plague these experiments.

Funder

Horizon 2020 Framework Program

Marie Sklodowski Curie Action Program Horizon MSCA 2022

Vetenskapsrådet

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3