Effects of mushy-zone parameter on simulating melting and solidification phenomena inside a spherical capsule

Author:

Tian Ziqian1ORCID,Xu Chao1ORCID,Liao Zhirong1ORCID,Jiang Kaijun1,Du Xiaoze1

Affiliation:

1. Key Laboratory of Power Station Energy Transfer Conversion and System of MOE, School of Energy Power and Mechanical Engineering, North China Electric Power University , Beijing 102206, China

Abstract

The research on latent heat storage technology is beneficial for the large-scale popularization and application of energy storage technology. In order to solve the difficulties in the latent thermal energy storage (LTES) technology, numerical studies of the solid–liquid phase-change process of LTES units using the enthalpy-porosity method have become research hotspots. Among them, the importance of studying the mushy-zone parameter has been neglected. In this paper, a two-dimensional numerical model is created based on the enthalpy-porosity method to investigate the effects of different mushy-zone parameters within a wide range [104–108 kg/(m3·s)] on the melting and solidification processes of the spherical phase change material capsule. A comprehensive examination of the fluid flow and heat transfer characteristics during two phase-change processes is conducted. Meanwhile, the morphology of the solid–liquid phase boundary and the evolution of the mushy zone under different mushy-zone parameters are discussed in detail. It is worth mentioning that a new analytical perspective is innovated by proposing the “eccentricity phenomenon,” and the eccentricity law is further explored. The results show that the influence mechanisms of the mushy-zone parameters on the melting and solidification processes differ greatly. This paper emphasizes the significance of exploring the mushy zone and provides adequate guidance for future simulation studies to determine the mushy-zone parameter.

Funder

National Natural Science Foundation of China

North China Electric Power University

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3