Affiliation:
1. Massachusetts Institute of Technology , 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
Abstract
The self-assembly of colloidal nanoparticles into ordered superlattices typically uses dynamic interactions to govern particle crystallization, as these non-permanent bonds prevent the formation of kinetically trapped, disordered aggregates. However, while the use of reversible bonding is critical in the formation of highly ordered particle arrangements, dynamic interactions also inherently make the structures more prone to disassembly or disruption when subjected to different environmental stimuli. Thus, there is typically a trade-off between the ability to initially form an ordered colloidal material and the ability of that material to retain its order under different conditions. Here, we present a method for embedding colloidal nanoparticle superlattices into a polymer gel matrix. This encapsulation strategy physically prevents the nanoparticles from dissociating upon heating, drying, or the introduction of chemicals that would normally disrupt the lattice. However, the use of a gel as the embedding medium still permits further modification of the colloidal nanoparticle lattice by introducing stimuli that deform the gel network (as this deformation in turn alters the nanoparticle lattice structure in a predictable manner). Moreover, encapsulation of the lattice within a gel permits further stabilization into fully solid materials by removing the solvent from the gel or by replacing the solvent with a liquid monomer that can be photopolymerized. This embedding method therefore makes it possible to incorporate ordered colloidal arrays into a polymer matrix as either dynamic or static structures, expanding their potential for use in responsive materials.
Funder
National Defense Science and Engineering Graduate
Office of Naval Research
U.S. Department of Defense
National Science Foundation
U.S. Department of Energy
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Colloidal gels;The Journal of Chemical Physics;2023-09-05