Adjoint-based variational optimal mixed models for large-eddy simulation of turbulence

Author:

Abstract

An adjoint-based variational optimal mixed model (VOMM) is proposed for subgrid-scale (SGS) closure in large-eddy simulation (LES) of turbulence. The stabilized adjoint LES equations are formulated by introducing a minimal regularization to address the numerical instabilities of the long-term gradient evaluations in chaotic turbulent flows. The VOMM model parameters are optimized by minimizing the discrepancy of energy dissipation spectra between LES calculations and a priori knowledge of direct numerical simulation using the gradient-based optimization. The a posteriori performance of the VOMM model is comprehensively examined in LES of three turbulent flows, including the forced homogeneous isotropic turbulence, decaying homogenous isotropic turbulence, and temporally evolving turbulent mixing layer. The VOMM model outperforms the dynamic Smagorinsky model, dynamic mixed model (DMM), and approximate deconvolution model in predictions of various turbulence statistics, including the velocity spectrum, structure functions, statistics of velocity increments and vorticity, temporal evolutions of the turbulent kinetic energy, dissipation rate, momentum thickness and Reynolds stress, as well as the instantaneous vortex structures at different grid resolutions and times. In addition, the VOMM model only takes up 30% time of the DMM model for all flow scenarios. These results demonstrate that the proposed VOMM model improves the numerical stability of LES and has high a posteriori accuracy and computational efficiency by incorporating the a priori information of turbulence statistics, highlighting that the VOMM model has a great potential to develop advanced SGS models in the LES of turbulence.

Funder

National Natural Science Foundation of China

National Numerical Windtunnel Project

Shenzhen Science and Technology Program

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Department of Science and Technology of Guangdong Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference123 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3