Composition, time, temperature, and annealing-process dependences of crystalline and amorphous phases in ductile semiconductors Ag2S1−xTex with x = 0.3–0.6

Author:

Sato Kosuke1ORCID,Hirata Keisuke1ORCID,Matsunami Masaharu123ORCID,Takeuchi Tsunehiro123ORCID

Affiliation:

1. Toyota Technological Institute 1 , Nagoya, Aichi 468-8511, Japan

2. CREST, Japan Science and Technology Agency 2 , Chiyoda-ku, Tokyo 102-0076, Japan

3. MIRAI, Japan Science and Technology Agency 3 , Chiyoda-ku, Tokyo 102-0076, Japan

Abstract

We investigate composition, time, temperature, and annealing-process dependences of crystalline and amorphous phases in ductile semiconductors Ag2S1−xTex with x = 0.3–0.6. We reveal that a metastable amorphous phase containing no secondary phases is obtainable at x = 0.6 even with furnace cooling and possesses ductility in the same manner as the end compound of Ag2S, while the high-temperature phase (HTP) of Ag2S precipitates in the amorphous phase at x = 0.3–0.5 by keeping the good ductility. During the crystallization process of the amorphous phase by annealing a sample at 373–503 K for 4–14 days and cooling it down slowly to room temperature, HTP of Ag2S disappears and the low-temperature phase (LTP) of Ag2S and the Ag5−dTe3 phase appear, while the amorphous phase remains. The ductility is observed for the samples containing the LTP of Ag2S but not for those containing the Ag5−dTe3 phase. Based on the obtained results, the possible phase diagram of Ag2S1−xTex with x = 0.3–0.6 is proposed, and the origin of the ductility in the LTP and HTP of Ag2S and amorphous phase is discussed. We believe that our study is helpful for properly predicting mechanical and transport properties of this material and developing this material as a component of bendable/wearable electronic devices for long-term use.

Funder

Japan Science and Technology Agency

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3