Numerical investigation on unstable oscillation of oxygen jet condensation in cryogenic liquid rocket

Author:

Zhu ChengfengORCID,Li YanzhongORCID,Wang LeiORCID,Xie FushouORCID,Ma Yuan

Abstract

Oxygen jet condensation always occurs with intense unstable oscillation in the cryogenic delivery pipe of a space launch vehicle. This phenomenon threatens the safety of the propulsion pipeline. It is essential to explore the transient physical features of oxygen jet condensation precisely, including the spectrum of pressure oscillation. Aiming at a deeper understanding of the thermal hydraulic characteristic of oxygen jet condensation, abundant simulations are carried out using a modified phase change method. In this model, the height function method is introduced to capture the interfacial curvature to reveal the mechanism of periodic fluctuation. The simulation proves that three typical flow patterns are found at variant operating conditions in oxygen jet condensation: chugging, oscillation, and swinging. The condensation regime diagram is summarized according to the flow pattern distribution. The chugging flow, along with the phenomenon of liquid oxygen sucked-back flow, shows the most intense pressure oscillation with a maximum amplitude of 133 kPa. In the oscillation flow, the oxygen vapor plume shrinks periodically with a low frequency of about 10 Hz. The swinging flow is a stable flow pattern with a slight pulsation of oxygen vapor plume wake. Its amplitude of pressure oscillation is approximately 1–3 kPa. The influence of liquid oxygen mass flow rate and subcooling on the unstable characteristic is also obtained. These findings offer ample theoretical direction for the development of the space launch vehicle.

Funder

National Natural Science Foundation of China

State Key Laboratory of Technologies in Space Cryogenic Propellants

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3