A 4–8 GHz kinetic inductance traveling-wave parametric amplifier using four-wave mixing with near quantum-limited noise performance

Author:

Faramarzi Farzad1ORCID,Stephenson Ryan12,Sypkens Sasha13ORCID,Eom Byeong H.1ORCID,LeDuc Henry1,Day Peter1ORCID

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology 1 , Pasadena, California 91101, USA

2. Division of Physics, Mathematics and Astronomy, California Institute of Technology 2 , Pasadena, California 91125, USA

3. School of Earth and Space Exploration, Arizona State University 3 , Tempe, Arizona 85281, USA

Abstract

Kinetic inductance traveling-wave parametric amplifiers (KI-TWPAs) have a wide instantaneous bandwidth with a near quantum-limited noise performance and a relatively high dynamic range. Because of this, they are suitable readout devices for cryogenic detectors and superconducting qubits and have a variety of applications in quantum sensing. This work discusses the design, fabrication, and performance of a KI-TWPA based on four-wave mixing in a NbTiN microstrip transmission line. This device amplifies a signal band from 4 to 8 GHz without contamination from image tones, which are produced in a separate higher frequency band. The 4–8 GHz band is commonly used to read out cryogenic detectors, such as microwave kinetic inductance detectors and Josephson junction-based qubits. We report a measured maximum gain of over 20 dB using four-wave mixing with a 1 dB gain compression point of −58 dBm at 15 dB of gain over that band. The bandwidth and peak gain are tunable by adjusting the pump-tone frequency and power. Using a Y-factor method, we measure an amplifier-added noise of 0.5 ≤ Nadded ≤ 1.5 photons from 4.5 to 8 GHz.

Funder

National Aeronautics and Space Administration

National Aeronautics and Space Administration Postdoctoral Program

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3