Sliding limited penetrable visibility graph for establishing complex network from time series

Author:

Wang Shilin12ORCID,Li Peng12ORCID,Chen Guangwu12ORCID,Bao Chengqi12ORCID

Affiliation:

1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University 1 , Lanzhou 730070, China

2. Key Laboratory of Plateau Traffic Information Engineering and Control of Gansu Province, Lanzhou Jiaotong University 2 , Lanzhou 730070, China

Abstract

This study proposes a novel network modeling approach, called sliding window limited penetrable visibility graph (SLPVG), for transforming time series into networks. SLPVG takes into account the dynamic nature of time series, which is often affected by noise disturbances, and the fact that most nodes are not directly connected to distant nodes. By analyzing the degree distribution of different types of time series, SLPVG accurately captures the dynamic characteristics of time series with low computational complexity. In this study, the authors apply SLPVG for the first time to diagnose compensation capacitor faults in jointless track circuits. By combining the fault characteristics of compensation capacitors with network topological indicators, the authors find that the betweenness centrality reflects the fault status of the compensation capacitors clearly and accurately. Experimental results demonstrate that the proposed model achieves a high accuracy rate of 99.1% in identifying compensation capacitor faults. The SLPVG model provides a simple and efficient tool for studying the dynamics of long time series and offers a new perspective for diagnosing compensation capacitor faults in jointless track circuits. It holds practical significance in advancing related research fields.

Funder

the Key Research and Development Project of Gansu Province

Natural Science Foundation of Gansu Province

Science and Technology Program of Gansu Province

Science and Technology Research and Development Program of China national Railway Group Co., Ltd.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3