Transfer learning and multi-fidelity modeling of laser-driven particle acceleration

Author:

Djordjević B. Z.1ORCID,Kim J.12,Wilks S. C.1,Ludwig J.1,Myers C.3ORCID,Kemp A. J.1ORCID,Swanson K. K.1ORCID,Zeraouli G.14ORCID,Grace E. S.1ORCID,Simpson R. A.1ORCID,Rusby D.1ORCID,Antoine A. F.5,Bremer P.-T.1ORCID,Thiagarajan J.1ORCID,Anirudh R.1ORCID,Williams G. J.1ORCID,Ma T.1ORCID,Mariscal D. A.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory 1 , Livermore, California 94550, USA

2. Center for Energy Research, University of California San Diego 2 , San Diego, California 92093, USA

3. Oregon State University 3 , Corvallis, Oregon 30332, USA

4. Colorado State University 4 , Fort Collins, Colorado 80523, USA

5. University of Michigan 5 , Ann Arbor, Michigan 48109, USA

Abstract

Computer models of intense, laser-driven ion acceleration require expensive particle-in-cell simulations that may struggle to capture all the multi-scale, multi-dimensional physics involved at reasonable costs. Explored is an approach to ameliorate this deficiency using a multi-fidelity framework that can incorporate physical trends and phenomena at different levels. As the basis for this study, an ensemble of approximately 8000 1D simulations was generated to buttress separate ensembles of hundreds of higher fidelity 1D and 2D simulations. Using transfer learning with deep neural networks, one can reproduce the results of more complex physics at a much lower cost. The networks trained in this fashion can, in turn, act as surrogate models for the simulations themselves, allowing for quick and efficient exploration of the parameter space of interest. Standard figures-of-merit were used as benchmarks such as the hot electron temperature, peak ion energy, conversion efficiency, and so on. We can rapidly identify and explore under what conditions differing fidelities become an important effect and search for outliers in feature space.

Funder

Lawrence Livermore National Laboratory

Office of Science

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3